Black Holes Hiding in Plain Sight

Will Dawson¹,

Natasha Abrams², Connor Barberi³, George Chapline¹, Nathan Golovich¹, Casey Lam², Jessica Lu², Scott Perkins¹, Kerianne Pruett¹ ¹Lawrence Livermore National Laboratory ²University of California, Berkeley ³United States Air Force Academy

25th International Microlensing Conference

2022 September 2nd

his discurnent was prepared as an account of work sponsored by an agetcy of the United States government. Neither the Inited State government howerse elevemors National Security. LCC, hor any of their employees makes any warranty presenter unplied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any itemation applications, product, or process disclosed, or opersents that its use wold the unfinge privately owned digits. Intervise does not prevent and any product process, or service by trade name, tradement, manufacturer, or therwise does not prevent and the united product, process, or service by trade name, tradement, manufacturer, or therwise does not prevent and provide and prevent the service of authors actions are serviced herein do not eccessarily state or reflect those of the United States government or Lawrence Livermore National Security. LEC the views and opinions of authors actions are there and not eccessarily state or reflect those of the United States government or Lawrence Livermore National Security. LEC the views and opinions of authors actions are prevented in the united state not event for advertising or production end prevent provide any previous and previous states over used for advertising or production end prevent provide the prevention of the any reset.

LLNL-PRES-839208

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Black hole hiding in plain sight discovered by Lukasz Wyrzykowski in ednesday Talk

Approach to <u>statistical constraints</u> on the relative abundance of black holes

1) Parallax + GP MCMC

3) Model-based Population Statistics

Component	Relative fraction: Data / Theory
Stars	ls it 1?
White Dwarfs	Is it 1?
Neutron Stars	Is it 1?
Black Holes	ls it 1?

Lawrence Livermore National Laboratory

PopSyCLE: Simulating galactic microlensing events including black holes and neutron stars

Casey Lam (UC Berkeley)

THE ASTROPHYSICAL JOURNAL, 889:31 (25pp), 2020 January 20 © 2020. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/ab5fd3

PopSyCLE: A New Population Synthesis Code for Compact Object Microlensing Events

Casey Y. Lam¹⁽¹⁰⁾, Jessica R. Lu¹⁽¹⁰⁾, Matthew W. Hosek, Jr.²⁽¹⁰⁾, William A. Dawson³⁽¹⁰⁾, and Nathan R. Golovich³⁽¹⁰⁾ ¹University of California, Berkeley, Department of Astronomy, Berkeley, CA 94720, USA; casey_lam@berkeley.edu ²University of California, Los Angeles, Department of Astronomy, Los Angeles, CA 90095, USA ³Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA *Received 2019 May 21; revised 2019 November 21; accepted 2019 December 5; published 2020 January 22*

PopSyCLE: Population Synthesis for Compact object Lensing Events Compact objects with Simulated Microlensing positions and velocities event parameters survey STELLAR **EVOLUTION** Stellar model Select component of Select single-age subset of component Milky Way (e.g. bulge) of Milky Way

The $\pi_E - t_E$ space holds powerful potential to identify black holes

OGLE has public light curves from their global analyses

- OGLE 3:
 - Wyrzykowski et al. 2014
 - 3560 lightcurves
 - High parallax separated out into Wyrzykowski et al. 2016

- OGLE 4:
 - Mroz et al. 2019
 - 5790 more events

Thank you OGLE!

But we need very accurate (but not necessarily precise) parallax estimates

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 260:2 (25pp), 2022 May
© 2022. The Author(s). Published by the American Astronomical Society.
OPEN ACCESS

https://doi.org/10.3847/1538-4365/ac5969

A Reanalysis of Public Galactic Bulge Gravitational Microlensing Events from OGLE-III and -IV

Nathan Golovich¹, William Dawson¹, Fran Bartolić^{2,3}, Kasey Y. Lam⁴, Jessica R. Lu⁴, Michael S. Medford^{4,5}, Michael D. Schneider¹, George Chapline¹, Edward F. Schlafly¹, Alex Drlica-Wagner^{6,7}, and Kerianne Pruett¹, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA; golovichl @Inl.gov ¹ Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA; golovichl @Inl.gov ² Centre for Exoplanet Science, School of Physics and Astronomy, University of St. Andrews KYI 6010, USA ³ Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, 6th Floor, New York, NY 10010, USA ⁴ University of California, Berkeley, Department of Astronomy, Berkeley, CA 94720, USA ⁵ Lawrence Berkeley National Laboratory, I Cyclotron Rd, Berkeley, CA 94720, USA ⁶ Wilson Fellow, Fermi National Accelerator Laboratory, Kirk Road and Pine St. Batavia, IL 60510, USA ⁷ Department of Astronomy and Astrophysics, Juiversity of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA *Received 2020 June 22: Prevised 2021 November 30; accepted 2021 December 15; published 2022 April 21*

Abstract

Modern surveys of gravitational microlensing events have progressed to detecting thousands per year, and surveys are capable of probing Galactic structure, stellar evolution, lens populations, black hole physics, and the nature of dark matter. One of the key avenues for doing this is the microlensing Einstein radius crossing time (t_E) distribution. However, systematics in individual light curves as well as oversimplistic modeling can lead to biased results. To address this, we developed a model to simultaneously handle the microlensing parallax due to Earth's motion, systematic instrumental effects, and unlensed stellar variability with a Gaussian process model. We used light curves for nearly 10,000 OGLE-III and -IV Milky Way bulge microlensing events and fit each with our model. We also developed a forward model approach to infer the t_E distribution by forward modeling from the data rather than using point estimates from individual events. We find that modeling the variability in the baseline removes a source of significant bias in individual events, and the previous analyses overestimated the number of $t_E > 100$ day events due to their oversimplistic model ignoring parallax effects. We use our fits to identify the hundreds filling a regime in the microlensing parameter space that are 50% pure of black holes. Finally, we have released the largest-ever catalog of Markov Chain Monte Carlo parameter estimates for microlensing events.

Unified Astronomy Thesaurus concepts: Gravitational microlensing (672); Astrophysical black holes (98); Time domain astronomy (2109); Astronomy data modeling (1859)

MCMC samples for >11,500 OGLE events

Model = Microlensing Parallax + GP

All publicly available on LLNL's Green Data Oasis https://gdo-microlensing.llnl.gov/

Example events with Microlensing + GP fit

- The linear trend as well as other intrinsic variability is modeled by the GP
- Enables more accurate microlensing model estimates

Golovich, WD, et al. (2022)

Does the GP 'eat' the microlensing signal?

 Both relatively large GP and Parallax component

Golovich, WD, et al. (2022)

Lawrence Livermore National Laboratory

Does the GP 'eat' the microlensing signal?

 Almost no GP component but with significant parallax

Golovich, WD, et al. (2022)

Lawrence Livermore National Laboratory

Injected known parallax signal into masked short timescale events to investigate if GP fits are biased

bias =	$oldsymbol{ heta}_{ m med} - oldsymbol{ heta}_{ m inj}$
	$\sigma_{oldsymbol{ heta}}$

Parameter $\mu_{\rm bias}$ σ_{bias} F_{base} -6.8×10^{-4} 0.0400.32 $b_{\rm sff}$ 1.1 -7.8×10^{-3} 1.4 t_0 1.3 $\log_{10} u_0$ 0.160.52 $\log_{10} t_E$ -0.120.770.11 $\log_{10} \pi_E$ ϕ_{π} -0.0290.97

Golovich, WD, et al. (2022)

Can we quickly identify any black holes?

Lawrence Livermore National Laboratory

However, it is difficult to have confidence that any single event is a black hole, especially since the parallax SNR is so low

Need a more rigorous approach. Step 1: Use kernel density estimation to create 'class' PDFs

Step 2: Use the MCMC samples with the KDEs to estimate the relative probability of the event belonging to a given class.

We are currently finding more black holes and neutron stars than the PopSyCLE simulations suggest

* Uncertainty only accounts for light curve model parameter variance and bootstrap estimate over light curves. Neglected and likely important uncertainty terms are related to galaxy model and stellar evolution model variance.

Why might we be seeing an excess?

There is a systematic that we have not thought of.

Something is incorrect with the Milky Way model that PopSyCLE used.

Something is incorrect with the stellar evolution model used by PopSyCLE.

 There is an addition component to the MW that we have not modeled in PopSyCLE who's phase space overlaps with that of both the NSs & BHs.

PopSyCLE + PBH <u>Simulations</u>

Simulating the number & distribution of expected events

Lawrence Livermore National Laboratory LLNL-PRES-839208

30 M_sun PBHs making up 100% dark matter not a good fit; Extended mass distribution with a lower tail would be a better

We are 100% positive there are binaries; we should probably add those to our simulation

Refer to previous talk "Assessing the Impact of Binary Systems on Microlensing" by Natasha Abrams

PopSyCLE

Modified PopSyCLE to simulate binary microlensing in the Milky Way

Galaxia – Sharma et al. 2011; SPISEA – Hosek et al. 2020; PopSyCLE – Lam et al. 2020

Including binary lenses shifts many objects in the the black hole region of parameters space, but need to resolve other discrepancies

Summary

- Introduced a new statistical means of constraining compact objects with microlensing
- Future Work
 - Disrupted binaries in PopSyCLE
 - Adding LMC & SMC to PopSyCLE
 - Extended PBH mass distributions
 - Marginalizing over 'nuisance' parameters through many PopSyCLE runs
- Roman is going to revolutionize black hole studies

