
Differentiable modelling of binary and triple lens events

Fran Bartolić

(Frahn Bart-oh-leech)

University of St Andrews

25th international microlensing conference

1
fbartolic

Context

• Modeling microlensing events is very difficult

• Too few researchers relative to scale of current and future datasets and
the effort required to model any given event

• Scientific results in microlensing are highly sensitive to computational
methods and assumptions that go into those methods

• There’s been very little methods development, novel methods from stats
and ML are under-utilised

2

What’s difficult about microlensing? Everything!

3

• Three big problems:

1. Fast and accurate computation of magnification for extended limb-darkened sources

• Need likelihood evaluations for MCMC class methods

2. Searching for and comparing different models

• Multiple competing hypotheses for any given dataset. How to find (and rank) the most
probable ones?

3. Exploring plausible values of parameters within a small neighbourhood of the
parameter space.

• How to obtain accurate parameter uncertainties for a single “solution”?

≳ 106

Gradients of the likelihood -> much more
information about parameter space

• Gradients -> local geometry of the likelihood ()

• Enable use of gradient based optimization and sampling methods:

• faster MLE estimation + exact Hessians (parameter covariance
matrix), Hamiltonian Monte Carlo, Variational Inference…

• Modern probabilistic programming and ML libraries all use gradient
based optimisers or MCMC samplers

χ2

4

Three ways of differentiating a function
1. Symbolic differentiation (pen & paper, Mathematica, SymPy)

•

2. Numerical differentiation (finite differences)

•

3. Automatic differentiation (differentiate through computer code, say
C++ or Python)

• jax.grad(jax.numpy.sin)(x)

d
dx

cos x = − sin x

f′ (x) ≈
f(x + h/2) − f(x − h/2)

h

5

Automatic differentiation (AD)
• Key idea:

• A computer program implementing a differentiable function is a composition
of elementary operations such as multiplication, addition, trig. functions, etc.

• Chain rule from calculus -> if you can differentiate each step, you can differentiate the whole

• The program could be something like a neural network (pile of liner algebra) or it could be
an entire physics simulator

• AD is the only way to compute derivatives of scalar functions with lots of inputs

• In ML “lots” can mean millions or billions of parameters!

• Deep Learning unimaginable without AD (backpropagation)

f : ℝn → ℝm

6

Automatic differentiation (AD)

• Can’t just take an off-the shelf C++ code and do AD, need to rewrite
the code from scratch using a specialised AD library

• Examples from astronomy: exoplanet (transits, RV, TTVs),
starry (occultations), exojax (exoplanet atmospheres), dLux
(differentiable optics) …

• Popular AD libraries: Tensorflow, PyTorch, Aesara and JAX
(Python), Eigen (C++), Enzyme (LLVM)

7

JAX
• Not just an AD library

• Write Python code but it gets JIT compiled to XLA
(low level language) on the fly

• -> C like speeds possible while writing code
which looks like Python!

• -> Same code works on CPUs, GPUs and TPUs!

• Coding a complicated physics model in JAX is not
easy, lots of caveats

8

Building a differentiable microlensing code
• I didn’t really understand how other codes worked so I started building my own

• This turned out to be very hard, do not recommend!

• The result is caustics : https://github.com/fbartolic/caustics

• caustics builds on previous work:

• Kuang et. al. 2021 (arXiv:2102.09163)

• Dominik 1998 (arXiv:astro-ph/9804059)

• Bozza et. al. 2018 (arXiv:1805.05653)

• Cassan 2017 (arXiv:1703.03600)

9

https://github.com/fbartolic/caustics

caustics in a nutshell
• Support for single, binary and triple lensing (extended sources and limb-darkening)

• Differentiable Aberth-Ehrlich complex polynomial root solver (https://hal.archives-
ouvertes.fr/hal-03335604)

• Contour integration algorithm adapted from Kuang et. al. 2021 with important changes

• Full support for AD, cost of gradient evaluation 3-5X the cost of magnification
evaluation

• Triple lens magnification only ~2X more expensive than binary lens magnification,
limb darkening ~8X more expensive than uniform brightness

• Up to 10X slower than VBBinaryLensing for uniform brightness mag., roughly the same
cost for limb-darkening, lots of room for improvement

10

https://hal.archives-ouvertes.fr/hal-03335604
https://hal.archives-ouvertes.fr/hal-03335604

Contour integration

11

Connecting the dots…

12

It works!

13

Next steps
• Test the code on real world problems!

• Test to switch between hexadecapole and full calculation doesn’t work for triple lenses at
the moment

• More tests for triple lensing

• Better error control -> need to differentiate through while loops

• Are gradient based methods actually useful? If not, what does that imply about
gradient-free methods?

• Astrometric microlensing -> need a few extra lines of code

• Arbitrary brightness profiles -> model stellar spots

14

Summary

fbartolic
15

fb90@st-andrews.ac.uk

• Differentiable modeling of microlensing light curves for the first time ever

• First fast triple lens code

• Looking for feedback from the community!

• Check out the code on GitHub, contribute!

• IMO, effort invested into methods development for microlensing
should be 10X more than it is today

mailto:fb90@st-andrews.ac.uk

Additional slides

16

17

18

19

