Candidate of the microlensing planet not toward the bulge ~ AT2021uey (Gaia21dnc) ~

- Team OAUW : M. Ban, R. Poleski, L. Wyrzykowski, P. Zielinski
- Team Fink : P. Voloshyn, E. Bachelet, J. Peloton

Makiko Ban

Astronomical Observatory, University of Warsaw
$25^{\text {th }}$ International Microlensing Conference $31^{\text {st }}$ August 2022 in Paris

Microlensing Event Alert

Date of alert	Telescope	Anormary detection
7 July 2021	ASAS-SN (21mc)	Yes
-7 July 2021	ZTF	Yes
27 July 2021	Gaia EDR3	No

Facility code	Telescope name and location	$\begin{aligned} & \text { Longitude } \\ & {[\operatorname{deg}]+\text { for E }} \end{aligned}$	$\begin{aligned} & \text { Latitude } \\ & {[\operatorname{deg}]+\text { for } \mathrm{N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mirror size } \\ & {[\mathrm{m}]} \\ & \hline \end{aligned}$	Instrument	Pixel scale [arcsec/pixel]
ASAS-SN	The All Sky Automated Survey for SuperNovae global network of telescopes	-	-	24×0.14	FLI ProLine PL230	7.80
LCO-1m	Las Cumbres Observatory, global network of 1-m telescopes	-	-	1.00	Sinistro	0.39
Gaia	ESA space mission	-	-	1.4×0.5	CCD 4500×1966	0.20
ZTF	The Zwicky Transient Facility, Samuel Oschin telescope, Palomar Observatory, California, US	-116.86	33.36	1.22	CCD 16x6144x6160	1.00
ZAO	Znith Astronomy Observatory, Malta	14.47	35.91	0.20	Moravian G2-1600	0.99
Slooh	network of 10 telescopes, Tenerife, Canary Islands, Spain	-16.64	28.27	0.36, 0.50	CCD	0.63, 0.73
HAO68	Horten telescope, Horten Videregaende Skole, Norway	10.39	59.43	0.68	Moravian G2-1600	0.79
AstroLAB-IRIS	AstroLAB IRIS, Ypres, Belgium	02.91	50.82	0.68	SBIG STL 6303E	0.62
Maidenhead	Commercial telescopes, Maidenhead, UK	-0.78	51.53	various	various	various
Loiano	Cassini telescope, Loiano Observatory, Italy	11.33	44.26	1.52	BFOSC	0.58
Flarestar	Meade SSC-10, Flarestar Observatory, Malta	14.47	35.91	0.25	Moravian G2-1600	0.99
Tacande	Tacande Observatory, La Palma, Canary Islands, Spain	-17.87	28.64	0.40	SX814 CCD	0.29

Source is not toward the Bulge

Source properties (Gaia ERD3):
RA, Dec = 21:38:10.81, +26:27:59.65
Baseline G-mag $=15.47$
$\left\{\begin{array}{l}\text { Parallax }=0.438 \pm 0.047 \mathrm{mas}\end{array}\right.$

Spectra data	FLOYDS	OHP/Mistral
Type	sub giant	red giant
$\mathrm{T}_{\text {eff }}[\mathrm{K}]$	6035 ± 1200	5440 ± 300
logg	3.02 ± 0.60	2.50 ± 0.50
$\mathrm{~A}_{v}$	0.26	0.21
Distance $[\mathrm{kpc}]$	2.50 ± 0.50	7.64 ± 1.93

Fitting the Light Curve

by MulensModel (Poleski and Yee 2018) \& pyLIMA (Bachelet, et al., 2017)

Fitting the Light Curve

by MulensModel (Poleski and Yee 2018) \& pyLIMA (Bachelet, et al., 2017)

(1) Approaching to a planet lens
(2) Crossing caustics
(3) Approaching to a host lens \rightarrow Main peak of the curve

Fitting the Light Curve

by MulensModel (Poleski and Yee 2018) \& pyLIMA (Bachelet, et al., 2017)

Lens properties

Event simulation using Besançon Galactic Model (Robin, et al. 2003, 2014, 2017)

Data

- $\mathrm{V}=15-16$ for source, $\mathrm{V}=20-99$ for lenses
- Distance $=0.01-15.00 \mathrm{kpc}$ with 0.01 interval
- Population is treated as the solid angle

Sampling

- Source probability : $D_{s^{\prime}} A_{v^{\prime}} M_{v^{\prime}} T_{\text {eff }}$ logg, Metallicity
- Lens probability : solid angle of the data
- Other constraints : t_{E}, ρ

Each event probability

Two $D_{\underline{s}}$ candidates

- Close source case (FLOYDS)
- Distant source case (OHP/Mistral)

Lens properties (Close source case)

Mean \& uncertainty of sample parameters:

$$
\begin{aligned}
& D_{s}=2.531 \pm 0.328 \\
& R_{s}=1.465 \pm 0.218 \\
& A_{v}=0.258 \pm 0.0235 \\
& T_{\text {eff }}=5981 \pm 160 \\
& l o g g=4.010 \pm 0.165 \\
& {[a / F e]=0.296 \pm 0.043} \\
& D_{l}=1.527 \pm 0.515 \\
& M_{l}=0.382 \pm 0.208
\end{aligned}
$$

Lens system parameters:

$$
\begin{aligned}
& M_{*}=0.381 \pm 0.207 M_{\text {sun }} \\
& M_{p l}=1.045 \pm 0.569 M_{\text {jupiter }} \\
& S_{A U}=7.283 \pm 3.196 \mathrm{AU}
\end{aligned}
$$

Lens properties (Distant source case)

Mean \& uncertainty of sample parameters:

$$
\begin{aligned}
& D_{s}=8.182 \pm 0.883 \\
& R_{s}=7.506 \pm 0.826 \\
& M_{v}=1.110 \pm 0.230 \\
& T_{\text {eff }}=5064 \pm 73 \\
& \log g=2.620 \pm 0.150 \\
& {[M / H] \operatorname{dex}=-0.758 \pm 0.256} \\
& D_{l}=3.709 \pm 1.569 \\
& M_{l}=0.453 \pm 0.192
\end{aligned}
$$

Lens system parameters:

$$
\begin{aligned}
& M_{*}=0.449 \pm 0.190 M_{\text {sun }} \\
& M_{p l}=1.231 \pm 0.522 M_{\text {jupiter }} \\
& s_{A U}=37.422 \pm 18.045 \mathrm{AU}
\end{aligned}
$$

Summary

The lens of the event (AT2021uey) possibly be ...

- M-dwarf \rightarrow In thin or thick disc?
- Jupiter-mass planet beyond the snow line \rightarrow At5-50 AU?

Reference

- Amôres, E. B., et al., 2017, A\&A, 602: A67.
- Bachelet, E. et al., 2017, arXiv: 1709.08704.
- Bienaymé, O., et al., 2015, A\&A, 581: A123.
- Bozza, V., 2010, MNRAS, 408: 2188-2200.
- Bozza, V., et al., 2018, MNRAS, 479: 5157-5167.
- Czekaj, M. A., et al., 2014, A\&A, 564: A102.
- Foreman-Mackey, D., et al., 2013, PASP, 125: 306-312.
- Fortney, J. J., et al., 2007, AJ, 659: 1661-1672.
- Mulders, G. D., et al., 2015, AJ, 807(1).
- Poleski, R. \& Yee, J., 2019, Astronomy and Computing, 26, 35.
- Persons, S. G., et al., 2018, MNRAS, 481: 1083-1096.
- Robin, A. C., et al., 2003, A\&A, 409: 523-540.
- Robin, A. C., et al., 2014, A\&A, 569: A13.
- Robin, A. C., et al., 2017, A\&A, 605: A1.

